How to... Compute Determinants

Given: \quad A quadratic matrix $A \in \mathbb{R}^{n \times n}$.
Wanted: The determinant $\operatorname{det}(A)$.

Example

We consider the Matrices $A \in \mathbb{R}^{2 \times 2}, B \in R^{3 \times 3}$, and $C \in \mathbb{R}^{4 \times 4}$.

$$
A=\left(\begin{array}{ll}
-1 & 7 \\
-3 & 2
\end{array}\right) \quad B=\left(\begin{array}{ccc}
4 & 0 & 2 \\
-2 & -1 & 2 \\
3 & -5 & 3
\end{array}\right) \quad C=\left(\begin{array}{cccc}
1 & 2 & 0 & -9 \\
2 & -3 & 5 & 8 \\
-1 & 0 & 0 & 6 \\
3 & -4 & 0 & -1
\end{array}\right)
$$

1 Use the direct formulas for $\mathrm{n} \leq 3$

If the dimension n is smaller or equal to 3 , use the following formulas.
a Case $\mathrm{n}=1$
$\operatorname{det}(a)=a$
b Case $\mathrm{n}=2$
$\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a c-b d$
c Case $\mathrm{n}=3$
$\operatorname{det}\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=a e i+b f g+c d h-g e c-h f a-i d b$
This computation can be easily memorized with Sarrus' rule:
Copy the first two columns of the matrix
The three top-left to bottom-right diagonals in this augmented matrix yield the positive terms of the determinant, the three bottom-left to top-right diagonals yield the negative terms in the determinant
a

$$
a e i+b f g+e d h-g e c-h f a-i d b
$$

ghogh
(Note, that Laplace's formula can be used for $n=2$ and $n=3$ as well)

Example for $n=2$ and $n=3$

$$
\operatorname{det} A=\operatorname{det}\left(\begin{array}{ll}
-1 & 7 \\
-3 & 2
\end{array}\right)=-1 \cdot 2-((-3) \cdot 7)=-2+21=19
$$

For $\operatorname{det}(B)$ we use Sarrus' rule
$\begin{array}{ccccc}4 & 0 & 2 & 4 & 0 \\ -2 & 1 & 2 & -2 & -1 \\ 3 & -5 & 3 & 3 & -5\end{array}$
and obtain

$$
\begin{aligned}
\operatorname{det}(B) & =4 \cdot(-1) \cdot 3+0 \cdot 2 \cdot 3+2 \cdot(-2) \cdot 3-3 \cdot(-1) \cdot 2-(-5) \cdot 2 \cdot 4-3 \cdot(-2) \cdot 2 \\
& =-12+0+10+6+40-0=44
\end{aligned}
$$

2 Use Laplace's formula for $n \geq 4$

Given any matrix $A \in \mathbb{R}^{n \times n}$, denote by $A_{i} \mathfrak{j} \in \mathbb{R}^{n-1 \times n-1}$ the matrix obtained from A by deleting row i and column j, i.e.,

Then choose one of the following formulas.

a Row Expansion

Choose any row i and use the following formula

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} \cdot a_{i j} \cdot \operatorname{det}\left(A_{i j}\right)
$$

b Column Expansion

Choose any column \mathfrak{j} and use the following formula

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+j} \cdot a_{i j} \cdot \operatorname{det}\left(A_{i j}\right)
$$

Use row- and/or column expansion until the sub-determinants $\operatorname{det}\left(\mathcal{A}_{\mathfrak{i j}}\right)$ can be computed with the formulas for $n \leq 3$.
Hint: As you can choose the row or column for the expansion freely, use rows with as many 0 elements as possible. This will simplify computations considerably.

Example for $n=4$
We choose the third column for expansion. Further, we use the sign matrix on the right as a help to identify the right sign (the $(-1)^{i+j}$-term) in the formula.

$$
C=\left(\begin{array}{cccc}
1 & 2 & 0 & -9 \\
2 & -3 & 5 & 8 \\
-1 & 0 & 0 & 6 \\
3 & -4 & 0 & -1
\end{array}\right) \quad\left(\begin{array}{llll}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & +
\end{array}\right)
$$

Using the formula for column expansion, we obtain

$$
\operatorname{det} C=+0 \cdot \operatorname{det} C_{13}-5 \cdot \operatorname{det} C_{23}+0 \cdot \operatorname{det} C_{33}-0 \cdot \operatorname{det} C_{43}
$$

We see, that we only need the submatrix C_{23} for the compuation of $\operatorname{det} \mathrm{C}$. This is a 3×3-matrix, i.e., this matrix can be computed using Sarrus' rule (or using further applications of Laplace's formula). We thus get
$\operatorname{det} C=-5 \cdot \operatorname{det}\left(\begin{array}{ccc}1 & 2 & -9 \\ -1 & 0 & 6 \\ 3 & -4 & -1\end{array}\right)=(-1)+36+(-36)-(-27)-(-24)-2=-56$

